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We discuss reparametrization-invariant systems, mainly the relativistic par-
ticle and its D-dimensional extended-object generalization to d-branes. For a
d-brane that doesn’t alter the background fields, we define non-relativistic equa-
tions assuming integral sub-manifold embedding of the d-brane. We argue for
a one-time-physics as an essential ingredient for a non-relativistic limit. The
mass-shell constraint and the Klein-Gordon equation are shown to be universal
when gravity-like interaction is present. Our approach to the Dirac equation
follows Rund’s technique for the algebra of the γ-matrices that doesn’t rely on
the Klein-Gordon equation [1].

We discuss some aspects of the non-relativistic, relativistic, and a la Dirac-
equation quantization of reparametrization-invariant systems. In its canoni-
cal form, the matter Lagrangian for reparametrization-invariant systems con-
tains well known interaction terms, such as electromagnetism and gravity. For
a reparametrization-invariant systems there are constraints among the equa-
tions of motion, which is a problem when attempting to quantize such system.
Nevertheless, there are procedures for quantizing such theories [1, 2, 3, 4, 5].
Here, we will demonstrate another approach ( v → γ) that takes advantage
of the fact that the corresponding Hamiltonian is identically zero (H ≡ 0) for
reparametrization-invariant systems.

Furthermore, we argue that a one-time-physics is needed to assure causality
via finite propagational speed in case of point particles. For d-branes the one-
time-physics reflects separation of the internal from the external coordinates
when the d-brane is considered as a sub-manifold of the target space manifold
M . The non-relativistic limit is considered to be the case when the d-brane is
embedded as a sub-manifold of M .

Some arguments for 4D space-time are based on geometric and differential
structure of various brane and target spaces [6, 7]. All these are reasons why the
spacetime seems to be four dimensional. Here we present an argument that only
one-time-physics is consistent with a finite propagational speed. Thus, resulting
in 1+3 Minkowski space-time.

In summary, we discuss the structure of the matter Lagrangian (L) for ex-
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tended objects. Imposing reparametrization invariance of the action S naturally
leads to a first order homogeneous Lagrangian. In its canonical form, L contains
electromagnetic and gravitational interactions, as well as interactions that are
not clearly identified yet.

The non-relativistic limit for a d-brane has been defined as those coordinates
where the brane is an integral sub-manifold of the target space. This gauge can
be used to remove reparametrization invariance of the action S and make the
Hamiltonian function suitable for canonical quantization. For the 0-brane (the
relativistic particle), this also has a clear physical interpretation associated with
localization and finite propagational speed.

The existence of a mass-shell constraint is universal. It is essentially due
to the gravitational (quadratic in velocities) type interaction in the Lagrangian
and leads to a Klein-Gordon equation. Although the Klein-Gordon equation
can be defined, it is not the only way to introduce the algebra of the γ-matrices
needed for the Dirac equation. The algebraic properties of the γ-matrices may be
derived using the Lie group structure of the coordinate bundle; these properties
are closely related to the corresponding metric tensor gαβ =

{
γα, γβ

}
and may

restrict the number of terms in the Lagrangian. Once the algebraic properties of
the γ-matrices are defined, one can use v → γ quantization in the Hamiltonian
function H = pv − L (x, v) to obtain the Dirac equation.
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