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Introduction

There is a long-standing argument that the individual points of a spacetime manifold
are physically unobservable, given the principle of general relativity, i.e. because we
expect all physics to be diffeomorphism-invariant and background-independent. As far
as the statement goes, one cannot distingush between “this point” versus “that point”
of spacetime itself, but only “the point where fields have this value” versus “the point
where fields have that value”. While the original idea historically dates back to the
relationism/substantivalism debate between Newton and Leibniz (or possibly even further
back), the modern formulation of the relational nature of physics was nicely phrased by
Carlo Rovelli1:

The world is made up of fields. Physically, these do not live on spacetime.
They live, so to say, on one another. No more fields on spacetime, just fields
on fields.

Simply put, the basic argument against the observability of spacetime points goes
as follows. If we choose one point of spacetime (by specifying its coordinates in some
coordinate system), observe the values of all fields at that point, and then perform an
“active diffeomorphism” (permutation of manifold points), we “move” all physics from
that point to another point. After that, we can perform a “passive diffeomorphism”
(choice of a different manifold chart), to undo the active one, i.e. we use the same set of
numbers as coordinates for the new point in the new coordinate chart as we have used
for the old point in old coordinates. Given that physics does not change throughout the
process, we conclude that one cannot distinguish between the “old spacetime point” and
the “new spacetime point”. Thus spacetime points are unobservable.

While all this is correct, one is often tempted to make a more general claim that the
whole spacetime manifold is an unobservable entity, given that its individual points cannot
be observed. The purpose of this lecture is to scrutinize that claim. Namely, individual
points aside, the spacetime manifold as a global entity has additional properties, which
are simultaneously both observable and diffeomorphism-invariant. Such properties are
the manifold’s dimension and topology. Thus, we argue that observing the dimension and
topology of the spacetime manifold could grant it objective, physical existence, despite
unobservability of its individual points. This stands in sharp contrast with the relational
ideas that ultimately there is no spacetime and that “fields live on fields”.

1C. Rovelli, Quantum Gravity, Cambridge University Press, Cambridge 2004.
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The strategy

We aim to address the following two questions:

(a) Given some model-independent theoretical framework, can the dimension and topol-
ogy of the spacetime manifold actually be observed? If so, what would be the exact
operational experimental protocol to do this? How generic is this procotol, i.e., how
much is it model-independent?

(b) Assuming the answer to (a) is affirmative, how does any detailed relational model of
physics account for the measurement of the dimension and topology of spacetime,
without assuming spacetime to begin with? Or more simply put, can one deduce
from the theory that spacetime is 4-dimensional and simply-connected?

The question (a) challenges the substantival point of view — if one wants to claim
that spacetime indeed does have objective reality, because one can consistently measure
its dimension and topology, one must first demonstrate that such measurements are pos-
sible, and that they give an unambiguous result, using a model-independent theoretical
framework.

The question (b) challenges the relational point of view — if one wants to claim that
spacetime does not have objective reality, one must give a theoretical prediction for the
result of the experiment established in (a), i.e., derive the dimension of spacetime from
first principles of some proposed relational theory which does not a priori postulate any
spacetime manifold. This kind of prediction has never been explicitly performed in any
relational theory of physics.

The method

Modern theoretical description of physics is built on an intuitive assumption that we
live in a spacetime where physical entities have length, width, height and age, giving rise to
the dimension of the spacetime manifold being D = 4. All experiments and observations
ever performed in the history of science so far support this conclusion, over an impressive
range of scales — from the scale of 1026 m (the size of the observable Universe) down to
the scale of 10−20 m (the distances probed by the current LHC and LIGO experiments).
Outside of these 46 orders of magnitude, one can in principle hope to observe an additional
15 orders of magnitude, from 10−20 m all the way to 10−35 m (the Planck scale). The latter
range is outside of our current technological capabilities, so we do not have any data to
either support or falsify the claim that D = 4.

Of course, one can ask the question how do we actually know that the dimension of
the physical spacetime is equal to 4 in the so far observed range of scales. To that end,
we propose a method (a gedanken-experiment) to observe the dimension and topology
of a manifold, which can be illustrated on a couple of toy-examples as follows. Given
two observables, A and B, we can perform multiple measurements of each, and obtain
multiple results, ai, bi (where i = 1, . . . , N). We can then plot those results as points in
the a-b configuration space. If the observables A and B are not correlated, the data will
be scattered all over the plot, which will look like the diagram on the left:
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However, it may happen (as it does in the real world) that there exists a particular type
of correlation between A and B, such that the plot looks like the diagram on the right,
revealing the underlying structure which defines the correlation — in the example above, a
1-dimensional closed curve, topologically equivalent to a circle S1 (up to self-intersections).
In this case, one can parametrize the points on the curve with a parameter t ∈ [0, 2π),
and encode the correlation between the observables A and B into a statement that they
both depend on t, giving rise to parametric equations for the measurement outcomes:

a = A(t) , b = B(t) .

In this way, the correlations between observables provide us with an insight that these
observables are actually two fields “living” on a 1-dimensional manifold S1. Note that
changing the parametrization from t to t′ does not change anything in the diagram, which
means that the correlation between the two fields is invariant with respect to 1-dimensional
diffeomorphisms of S1.

Moreover, we can extend our analysis to include another, third observable, C. If the
observables are uncorrelated, the plot of the measurement results of all three observables
in the a-b-c configuration space will resemble the 3D diagram on the left:

However, there may exist a suitable correlation between the observables, so that instead
we obtain the diagram on the right, again revealing the underlying manifold S1, which
allows us to write the parametric equations

a = A(t) , b = B(t) , c = C(t) ,
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and to interpret the observables A, B and C as fields living on a 1-dimensional circle.
The fact that the diagram on the right reveals a circle is an intrinsic property of the
observables, since in principle we could have obtained a different plot, where the points
(ai, bi, ci) were arranged on a 2-dimensional sphere instead of a 1-dimensional circle.

Using the kind of reasoning illustrated in the above toy-examples, we argue that in a
similar way one can infer that the proper observables from the real world always display
correlations reflecting an underlying structure of a 4-dimensional manifold M4, which
we call spacetime, and that its topology is simply-connected on the scales that can be
tested. Specifically, regardless of the choice and the number K of observables we are
sampling, it somehow magically turns out that they always display just the right amount
of correlations, so that one can write them in the form of parametric equations

a1 = A1(t, x, y, z) , . . . , aK = AK(t, x, y, z) ,

where t, x, y, z are parameters of some chart on some manifold M4. In that sense, we can
say that the observables A1, . . . , AK are fields living on M4. Note that this conclusion is
diffeomorphism-invariant, since the choice of a different parametrization t′, x′, y′, z′ instead
of t, x, y, z does not in fact change anything in the correlation diagram. The fact that
we obtain D = 4 is an intrinsic experimental property of the observed outcomes, since in
principle we could have obtained a correlation that corresponds to D = 3 or D = 5 or
otherwise.

Concluding remarks

Of course, despite the fact that the diagrams above appear suggestive, it is far from
obvious how one can deduce the existence of a manifold and its dimension and topology,
based on a scatter-plot of individual data points, in the general case. Therefore, we will
describe a more rigorous and complete mathematical technique that performs both of
these tasks.

In light of the above, the question (b) becomes highly nontrivial. Namely, given a
theoretical model which describes the detailed dynamics of observables A1, . . . , AK , and
which explicitly does not assume the existence of an underlying spacetime manifold (in
line with the relational point of view), the challenge is to deduce from theory that there
exist some very peculiar correlations between the observables, describing their dynamics
as if they were fields living on a manifold with a specific dimension and topology. In
particular, a viable realistic theoretical model ought to give rise to the result D = 4
purely from the interactions between the fields in the model. This would amount to
a notion of “emergence” of spacetime. However, so far no such model has ever been
constructed, and until one is, we can argue that spacetime is a notion that objectively
exists in its own right, as part of our physical reality.
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