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In the following, I will discuss the geometric and physical interpretation of spacetime singularities
occurring in general relativity (GR).

GR has two main problems: the prediction of singularities [4], and the problem of quantization.
Despite these problems, the predictions of GR continue to be confirmed by experiment, culminating
recently with the detection of gravitational waves resulting from the merging of two black holes [3].

Given the repeated experimental confirmation of the predictions of GR as compared to the
alternative theories, we should consider more carefully what GR itself has to say about singularities.
This motivated my research program to find natural formulations of GR in terms of variables that
remain finite at singularities, cf. [8] and references therein. I will briefly review these results, and
then discuss the geometric and physical interpretation of singularities and singular spacetimes.

The problem with singularities is that the metric becomes singular. This means that some of
the metric tensor components gab or gab become infinite. This prevents the construction of the
covariant derivative Γa

bc (since Γa
bc requires the inverse of the metric) and the Riemann curvature

Ra
bcd. However, in [11] I show that differential geometry can be extended in a natural and invariant

way to singular metrics gab which are smooth and become degenerate (det g = 0). Only the lower
covariant derivative (in terms of Γabc) and the lower form of the Riemann curvature Rabcd remain
finite at such singularities, but this turned out to be enough to describe a large class of singularities,
and to rewrite Einstein’s equation in terms of quantities that remain finite, and still be equivalent
with the original Einstein equation outside the singularities [11, 9]. This applies to FLRW and more
general big bangs [14, 7]. Black hole singularities are apparently not of this type, but this is because
the usual coordinates are themselves singular, similarly to the case of the event horizon, which was
resolved by Eddington [1] and Finkelstein [2]. However, a similar method could be used to make
the r = 0 singularity of black holes smooth, albeit degenerate [6, 5]. The mentioned methods
developed for degenerate metrics could then be applied, and the Schwarzschild solution could be
extended analytically beyond the singularity. Singularities turned out to be compatible with global
hyperbolicity [6, 12], improving our understanding of the information during black hole evaporation.
Not only that the singularities in GR turned out to be understandable in terms of finite quantities,
but they are also accompanied by dimensional reduction effects, which are researched in the last
years because they allow the removal of infinities in perturbative quantum gravity [10].

If Nature prefers to use the proposed variables and atlases, it has to do this not just as a trick
to avoid the infinities at singularities, but for more fundamental geometric and physical reasons.
In the following, I try to elucidate these reasons.

Spacetime has a topological, a differential, and a (geo)metric structure, built one in top of an-
other. The more fundamental are the topological and the differential structures. The metric is a
dynamical quantity, which depends on the stress-energy of matter. Being dynamical, there is noth-
ing to stop it from becoming degenerate at some places, and this is why singularities appear. The
fact that the metric is less fundamental than the manifold structure agrees with our mathematical
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understanding of differential geometry. However, physically, it is possible that the causal structure
(representing the type of separation between spacetime events) is more fundamental than the dif-
ferential structure. This view is supported by the fact that the topology of lightcones is not affected
at the important big bang and black hole singularities, while their differential structure is affected
[13]. Another question is related to the connection and the curvature. The connection specifies
isometries between the tangent spaces at infinitesimally closed events. If the lower connection is
more fundamental, it should also admit a geometric interpretation. The lower connection, rather
than connecting the tangent spaces, connects the tangent space at an event with the cotangent
space at an infinitesimally closed event in spacetime. Its non-commutativity is expressed by the
lower Riemann curvature Rabcd, which may be more fundamental, if we think that this tensor and
not Ra

bcd exhibits the known symmetries at permutations of indices, the decomposition in the Weyl
and Ricci curvatures, and the corresponding spinorial decomposition.

Regarding the physical content, the proposed replacement of Einstein’s equation is

(1) Rab dvol−
1

2
gabR dvol +gabΛ dvol =

8πG

c4
Tab dvol,

which is clearly equivalent to Einstein’s outside the singularities, where dvol 6= 0, but its terms
remain finite at singularities at least in some important cases. Is Tab dvol more fundamental than
Tab? It should be, considering that what we integrate in order to obtain the mass or the momentum
are the volume forms of the form Tabu

aub dvol. This is clear for example if the stress-energy corre-
sponds to a fluid, Tab = (ρ+ p)uaub + pgab. One integrates the differential forms ρdvol and pdvol,
and not the scalar quantities ρ and p, which are not invariant, depending on the coordinates. This
is consistent with the fact that on differentiable manifolds mathematicians integrate volume forms,
not scalar or tensor fields. Also, the curvature terms have a geometric interpretation in this form.
In addition, the Lagrangian density is R dvol, and the corresponding equations are (1) rather than
the usual Einstein equation, which are obtained by dividing by dvol, which is prohibited when the
metric is degenerate, because they lead to infinities. In the particular case of the FLRW spacetime,
the quantities ρdvol and p dvol remain finite in the Friedman equations.

The above considerations suggest that the quantities used in rephrasing the geometry and physics
to work at singularities are at least as adequate as the standard ones, both from physical and from
geometric points of view.
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