
Unification, decoupling, and identification in
the “Palatini formalism”

1 Introduction

This paper focuses on several philosophical (and historical) aspects of the
“Palatini formalism” as a “metric-affine” approach to general relativity. It is
argued here that the history and the conceptual development of this formal-
ism (mainly in the first two decades after the wake of general relativity), as
well as its more recent incarnations, illustrate nicely the interplay of several
concepts in philosophy of science. First, the focus here is on the unificatory
power of a formalism based on a two-stage approach: first the decoupling of
two mathematical structures by taking them as independent variables, fol-
lowed by a partial identification of these structures. Second, it is important
to relate operations such as decoupling and identifications of mathematical
structures to mathematical explanations. Last but not least, this approach
complements and augments current discussions on the role and value of varia-
tional principles in physics, especially in general relativity. Overall this paper
attempts to show how mathematical constructs and assumptions have a role
in the ontology of general relativity and of some of its “extensions.”

The “Palatini formalism” is related to the Lagrangian formulation of gen-
eral relativity. When used in the context of the action with the Lagrangian
density, the “Palatini action,” similar to the Hilbert action, outputs Einstein
field equations.1 Although it is equivalent to the Hilbert approach for a large
class of problems, the “Palatini formalism” is nevertheless a “metric-affine”
approach, in which the Lagrangian is a scalar density of the invariants of the
curvature built from both the metric g and the connection Γ. This is in stark
contrast with the “pure metric” or “pure affine” approaches where these

1For elementary introductions see Faraoni and Capozziello (2011); Wald (1984)
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quantities are not independent: in the metric approach, the one adopted
by both Einstein and Hilbert in their original deductions of the field equa-
tions, the metric fixes the causal structure of spacetime and the relations of
measurements of spacetime distances with clocks and rods.

The main aim of this paper is to go beyond the “Palatini formalism”
and to emphasize the distinct roles in the ontology of spacetime of these two
structures (we prefer to talk about mathematical ‘structures,’ rather than
‘objects’): on one hand, there is the metric gµν , together with its Levi-Civita

connection

{
µ
αβ

}
and, on the other hand, the torsion-less connection Γµ

αβ.

In the “Palatini formalism,” the two mathematical structures g and Γ are
taken to be independent quantities, and both are fundamental. We call their
independent variation in an action principle the “ g−Γ decoupling.” Second,
based on some physical constraints, one can identify a posteriori aspects of
the two structures and impose, for example, that the Γµ

αβ is identified with

the Levi-Civita connection

{
µ
αβ

}
of gµν . This process of identification is

analyzed in this paper as “unification by identification.” This type of unifi-
cation is discussed in other contexts (thermodynamics, the electromagnetic
unification, the electroweak unification, etc.) in the philosophical literature.
(Glymour 1980; Morrison 2000)

2 A convoluted history

Some historical remarks are in order here. This paper surveys work in gen-
eral relativity in the period between early 1920s and 1941 by Palatini, Ein-
stein, Weyl, Eddington, and some recent “Extended Theories of Gravity,”
approaches based on corrections, generalizations, and extensions to the main
theory, as reviewed by Faraoni and Capozziello (2011).

Recall that the “Palatini formalism” is a misnomer: the method was
anticipated by Weyl and Eddington in the early 1920s, but was explicitly used
by Einstein in three papers written in 1923 without mentioning Palatini’s
name. (Albert Einstein 1923a; Albert Einstein 1923b; Albert Einstein 1923c)
Einstein will wrongly attribute this method to Palatini for the first time in
(A. Einstein 1941) and later in many other papers. The method used by
Palatini in (Palatini 1919) differs radically from the “Palatini formalism.”
For several reasons, the attempts by Eddington and Weyl in the early 1920s
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won’t qualify as a “Palatini formalism” either; historical details are available
in (Ferraris, Francaviglia, and Reina 1982 and references therein; Ray 1975;
Cattani 1993). We adopt tacitly the conclusion of several historical studies
that the original paper of Palatini is conceptually rather different than what
we call now the Palatini formalism.

Second, this paper is part and parcel of a philosophical and historical
approach to variational principles in physics. The role of variational prin-
ciples in physics, and especially in general relativity, is a convoluted topic.
Einstein and Grossmann had used, or misused, variational principles in their
Entwurf theory in the 1913-1916 period: the problem was the limited covari-
ance of the action. Lorentz and separately Hilbert have corrected partially
this problem and set the Hamilton principle at the heart of the deduction of
the gravitational field equation in 1916. Hilbert carried out the variational
method by assuming that the gravitational Lagrangian LG is linear in the
curvature R: LG =

√
gR and that the affine connection equals the Christoffel

symbols of the metric g: Γµ
αβ =

{
µ
αβ

}
. Later, Einstein acknowledged the

virtue of Hilbert, Lorentz, among others, in deriving the field equations from
variational principles.

At a first sight, the “Palatino formalism” as exposed be Einstein (Albert
Einstein 1923c) integrates well with Hilbert’s original motivation for develop-
ing the field equation of general relativity: the unification of gravitation and
electromagnetism, or more precisely the attempt to geometrize on a common
ground gravitation and electromagnetism.

The last motivation of the Palatini formalism is more related to devel-
opments in the 1980s. The reasons to extend gravity are multiple, but two
are germane in this context: adding higher order curvature invariants to
the curvature tensor R, or/and adding scalar fields which are minimally, or
non-minimally, coupled to the gravitational field, most preeminently, this is
the case of string theory or Kaluza-Klein theories. Another framework in
which this formalism is relevant is the Brand-Dicke theory because of the
non-minimal coupling ω with the scalar ϕ.

3 Unification, coupling and decoupling

In direct relation to the Palatini formalism, this paper remarks that if one
takes the metric gµν and the connection Γµ

αβ as independent quantities, one
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decouples the mathematical structure of the metric from the structure of the
geodesic. As a direct consequence, the causal structure of the spacetime is
decoupled from its geodesic structure. It is also worth noting than in this case
the Principle of Equivalence and the Principle of Causality become indepen-
dent as a result of the decoupling of the two mathematical structures. This
is indicative that “this decoupling enriches the geometric structure of space-
time and generalizes the purely metric formalism.” (Faraoni and Capozziello
2011, 68)

There are three more ‘far-fetched’ consequences of the present analy-
sis. First, the decoupling-identification succession entails that we clarify the
meanings of both the concept of geodesic structure and metric by decoupling
them in a formalism and then use identification to stabilize their semantics.
The two concepts may be co-extensive in physics, but they have different
conceptual meanings that may illuminate new physical aspects of gravity
beyond its classical formulation. The Palatini formalism shows ultimately
that corrections, generalizations and extensions to gravity are most likely
opening the doors to “metalinguistic” interpretations of general relativity,
contra (Curiel 2009). Second, this is an intriguing case of underdetermi-
nation of two formalisms by data, enticing philosophically and historically.
Both Hilbert-Einstein and the Palatini actions belong to a large class of pos-
sible forms which all fit the observational data available. Explanatory and
unificatory virtues of theories then may weight in and in this case one can
state, as argued above, the advantages of the Palatini account in accom-
modating non-linear corrections to the Lagrangian as well as non-minimal
couplings with scalar fields. Third, as stated here, the Palatini case can illu-
minate important aspects of variational principles in physics, and in this case
the most preeminent are the consequences for the ontology of spacetime: its
dual nature and its coupling aspect.
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