
On the Alleged Incommensurability of Newtonian and Relativistic Mass 

One of the enduring debates about scientific change concerns the extent to which there is 
conceptual continuity across successive theories.  The same term as used in different theories 
often on its face appears to have ultimately different extensions. Despite some ostensive 
overlap, the traditional story goes, they are embedded in a different network of terms that, 
holistically, grants it a different meaning.  There has also been a more recent resurgence of 
debate regarding limiting-type relationships between theories, especially in physics, and 
whether these count as reductive relationships.  This debate has concerned to what extent 
one theory can be the limit of another, and whether, if it is, this explains the limit theory.  
Although these two debates are not always explicitly connected, one of my goals is to show 
how a particular sort of positive solution to the reduction question can also contribute to 
understanding the extent of conceptual continuity and discontinuity between theories related 
by a limit.  In particular, I apply some relatively new (to the philosophical literature) 
topological tools for understanding the limiting relationship between Newtonian and 
relativistic kinematics to what is perhaps the most well-known alleged example of conceptual 
incommensurability, that between the Newtonian and relativistic concepts of mass.  My main 
contention is that the mass concept in the two theories of kinematics is essentially the same. 

Famously, of course, both Kuhn and Feyerabend provided historical evidence that, in the 
mathematical framework used to formulate Newtonian and relativistic kinematics at the 
latter’s inception in 1905, these concepts were not the same.  I do not intend here to dispute 
their historical claims.  Rather, my contention is based on a reconstruction of both theories in 
light of the best mathematical frameworks for describing them now, that of four-dimensional 
differential (affine) geometry.  Thus, I do not intend to dispute here how historical actors 
involved in the construction, elaboration, and propagation of relativity theory.  Instead, I wish 
to show that however the situation appeared to these actors, there is a way of describing and 
understanding these theories and their relationship that makes completely transparent the 
commonality of their concepts of mass. 

One of the interesting conclusions to draw from this is that the usual understanding of 
incommensurability is likely too tied to the contingent and accidental features of the 
particular language in which a theory may be described—that is, it is too tied to the syntactic 
conception of theories that dominated philosophy of science in the 1960s.  While there 
continues to be debate about the merits of the semantic view of theories, the syntactic 
view’s successor, almost all seem to be in agreement that capturing the structure of a theory 
involves in large part aspects that are invariant (or at least appropriately covariant) across 
choice of language.  Taking this into account shows that the essential differences are not so 
invariant.  This moral is important for the reduction literature, too, for one potential 
objection to the claim that Newtonian kinematics is the reductive limit of relativistic 
kinematics is that the incommensurability of their mass concepts prevents the limit from 
being reductive, i.e., explanatory.   Thus showing the commonality of the mass concepts is 
also important for understanding the explanatory relationship between the theories. 

The technical portion of my argument proceeds in three phases.  The first involves 
formulating both Newtonian and (special) relativistic kinematics in the framework of four-
dimensional differential (affine) geometry, with the worldlines of particles as certain 
(timelike) piecewise smooth one-dimensional submanifolds.  In both kinematical theories, 



mass is a non-negative parameter that, when associated with a worldline, specifies the 
degree to which the worldline departs from being a geodesics—following locally straight 
(“unforced”) motion. The mass parameter then in both theories enters into the expression of 
the particle’s four-momentum as a kind of normalization constant.  I point out that there is a 
degree of convention not normally recognized in how it so enters, but that the choice of 
convention is essentially irrelevant when considering the details of simple particle collisions.  
The completion of this formulation reveals that mass plays the same functional roles in both 
kinematical theories; the only substantive difference lies in different spacetime structures 
that determine spatial distances and temporal lengths. 

These different structures are nonetheless related, and in the second technical phase, I show 
how the Newtonian structure arises at the limit of the relativistic structure.  This limit is 
constructed mathematically, by considering sequences of relativistic spacetimes (with various 
particles and observers within) that converge to Newtonian spacetimes, the sense of 
convergence being given by an appropriately chosen topology on the joint class of 
spacetimes.  Because the Newtonian and relativistic spacetimes have a common conceptual 
interpretation, as revealed in the first phase, the topology can be easily interpreted as 
encoding similarity of empirical predictions.  Thus a convergent sequence of relativistic 
spacetimes does not indicate a sequence in which the speed of light grows without bound, but 
rather one in which the measurements of the fixed observers can be better and better 
approximated by those of a certain hypothetical idealized Newtonian observer. 

The third phase responds to a natural objection to the above account, namely that it has not 
explained the significant difference of Einstein’s mass-energy relation, E=mc2.  Here I build on 
previous work by Rindler, Lange, and Flores, as well as on the conventional elements 
mentioned above, to explain the significance of the most famous equation not asserting the 
identity of mass and energy, but either as defining energy or stating an energy content 
associated with mass.  The analysis of classical “fission” experiments can then be made where 
change in mass is interpreted only as a change in effective mass, a conceptual move also 
available in the Newtonian framework.  Lastly, I gesture towards how this analysis extends to 
the Newtonian and general relativistic theories of gravitation, the former in its Newton-
Cartan form, where the presence of the same sort of mass can be understood as having the 
same sort of influence on spacetime geometry.


