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In this work we consider the ontological status of the Unruh effect. Is it just a formal mathematical
result? Or the temperature detected by an accelerating observer can lead to real physical effects such
as phase transitions? In order to clarify this issue we use the Thermalization Theorem to explore
the possibility of having a restoration of the symmetry in a system with spontaneous symmetry
breaking of an internal continuous symmetry as seen by an accelerating observer. We conclude that
the Unruh effect is an ontic effect rather than an epistemic one, giving rise, in the particular example
considered here, to a phase transition (symmetry restoration) in the region close to the accelerating
observer horizon.

Trying to understand better Hawking radiation, Unruh did an amazing discovery in 1976. He realized that an
observer moving through the Minkowski vacuum with a constant acceleration a will detect a thermal bath at temper-
ature:

T =
ah̵

2πckB
. (1)

This result was first obtained for free bosonic quantum fields but later it was extended to interacting fields giving rise
to the so called Thermalization Theorem. The relevance of the above formula is based, among other things, on the
fact that it relates Quantum Mechanics, Relativity and Statistical Physics because it contains the Planck constant h̵,
the speed of light c and the Boltzmann constant kB (in the following we will use natural units with c = h̵ = kB = 1). In
four dimensional Minkowski space M4 we can introduce Cartesian inertial coordinates Xµ = (T,X,Y,Z) with metric:

ds2 = dT 2
− dX2

− dY 2
− dZ2. (2)

For the accelerating observer with acceleration directed in the X direction it is natural to introduce the comoving
coordinates defined as: T = eax sinh (at)/a,X = eax cosh (at)/a, Y = y and Z = z. These coordinates have event horizons
corresponding to X = −T and X = T and therefore they cover only the so called right Rindler region R (X >∣ T ∣).
The accelerating observer can only feel the Minkowski vacuum fluctuations inside R. However those fluctuations are
entangled with the ones corresponding to the left Rindler region L (X < − ∣ T ∣) as in the Einstein, Podolsky and
Rosen setting. The result is that she sees the Minkowski vacuum as a mixed state described by a density matrix
ρR which, according to the Thermalization Theorem, can be written in terms of the Rindler Hamiltonian ĤR (the
generator of the t time translations) as:

ρ̂R =
e−2πĤR/a

Tre−2πĤR/a
(3)

so that the expectation value of any operator ÂR defined on the Hilbert space corresponding to R in the Minkowski
vacuum ∣ ΩM > is given by:

< ΩM ∣ ÂR ∣ ΩM >= Trρ̂RÂR. (4)

This result can be seen as the one corresponding to a thermal ensemble at temperature T = a/2π (in natural units)
and it can be understood as a very precise formulation of the Unruh effect.

In any case one can of course wonder about the ontological status of this effect. Is the above result just formal or
it truly represents a thermal effect? In Unruh’s words: Could it be possible to cook a steak by accelerating it? More
technically speaking: Can the Unruh effect give rise to phase transitions?

In order to explore this issue we have considered a model featuring a spontaneous symmetry breaking, namely the
well known SO(N + 1) Linear Sigma Model (LSM). This model is defined by the Lagrangian:

L =
1

2
∂µΦT∂µΦ − V (ΦTΦ) + Jσ (5)

where the multiplet Φ = (π̄, σ) contains N + 1 scalar fields (π̄ is an N component scalar multiplet). The potential is
given by:

V (ΦTΦ) = −µ2ΦTΦ + λ (ΦTΦ)
2

(6)



2

where λ is positive in order to have a potential bounded from below and we consider µ2 to be positive in order to
provide a spontaneous symmetry breaking (SSB). When the external field is turned off (J(x) = 0), the SSB pattern
is SO(N + 1)→ SO(N) and N Goldstone bosons appear in the spectrum.

At the tree level and a = 0 the low-energy dynamics is controlled by the broken phase:

< ΩM ∣ π̂
a
∣ ΩM >= 0; < ΩM ∣ σ̂ ∣ ΩM >= v. (7)

where v2 = NF 2 = µ2/2λ. Then the relevant degrees of freedom are the π̂ fields which correspond to the Goldstone
bosons (pions). Fluctuations along the σ direction correspond to the Higgs, the massive mode which is relevant at
higher energies or temperatures.

By using the Thermalization Theorem it is also possible to obtain the Minkowski vacuum expectation value (VEV)
of the squared σ field in the large N limit, which at x = 0 is given by:

< ΩM ∣ (σ̂(0))
2
∣ ΩM >= v2 (1 −

a2

a2c
) (8)

for 0 ≤ a ≤ ac and < ΩM ∣ (σ̂(0))
2 ∣ ΩM >= 0 for a > ac. Here the critical acceleration ac is given by: a2c = 3(4π)2v2/N .

This is exactly the thermal behavior of the LSM in the large N limit with a/ac playing the role of T /Tc as seen
by an inertial observer. It corresponds to a second order phase transition at the critical acceleration a = ac where
the spontaneous broken symmetry for a < ac is restored for the accelerating observer for a > ac. This result can be
extended to any point of the R region the result being:

< ΩM ∣ (σ̂(x))
2
∣ ΩM >= v2 (1 −

a2

a2c
e−2ax) . (9)

Therefore the σ field VEV seen by the accelerating (comoving) observer is position dependent. This is not strange
since the proper acceleration along the X direction is breaking the Minkowski translation (and rotation) invariance.
Now let us assume a belonging to the interval 0 < a < ac. Then the squared VEV will be a function on the coordinate
x ranging from v2 for x =∞ to zero, which is reached at some negative x value given by:

xc = −
1

2a
log

a2c
a2

< 0 (10)

where the phase transition takes place. Notice that this locus x = xc is indeed a surface because the VEV is y and z
(as well as t) independent. Now it is possible to write the VEV in terms of the inertial coordinates X and T :

< ΩM ∣ (σ̂(x))
2
∣ ΩM >= v2 (1 −

1

a2c(X
2 − T 2)

) . (11)

It is very interesting to realize that this function does not depend on the acceleration a but only on the critical
acceleration ac and on v. In other words the VEV landscape depends only on the v parameter defining the LSM, but
not on the acceleration of the comoving observer.

Therefore we have shown that a continuous spontaneously broken symmetry is restored for an accelerating observer.
For her the VEV of the field depends on the position and it vanishes beyond a surface in the horizon direction.

We see this fact as a solid evidence in favour of the ontic character of the Unruh effect.
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