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Pythagoras’ theorem lies at the heart of physics as well as mathematics, 

yet its historical origins are obscure. We highlight a purely pictorial, gestalt-like 

proof that may have originated during the Zhou Dynasty. Generalizations of the 

Pythagorean theorem to three, four and more dimensions undergird fundamental 

laws including the energy-momentum relation of particle physics and the field 

equations of general relativity, and may hint at future unified theories. The 

intuitive, “pre-mathematical” nature of this theorem thus lends support to the 

Eddingtonian view that “the stuff of the world is mind-stuff”. 

 

The Pythagorean theorem 𝑥2 + 𝑦2 = ℎ2 (where x,y and h are the sides and hypotenuse of a 

right-angled triangle) is fundamental to physics as well as mathematics [Henry 2017]. Although 

widely credited to Pythagoras of Samos (c. 570-495 B.C.), versions of it were known many 

centuries earlier to Babylonian, Indian and Chinese mathematicians. New proofs have since been 

offered by so many people that it has been officially declared the world’s “most proved theorem” 

in the Guinness World Book of Records. The list includes Euclid, Legendre, Leibniz, Huygens, 

Einstein, and a former U.S. President [Overduin, Molloy and Selway 2014]. 

Among the most interesting proofs are “gestalt-like” ones that can be grasped in a single 

glance using no mathematics at all. Such pictorial, tangram-like proofs may have originated in 

China [Anjing 1997]. One was described by Liu Hui in his 263 A.D. commentary on an earlier 

book, the Jiuzhang suanshu or Arithmetic in Nine Chapters [Wagner 1985]: 

 

The shorter leg multiplied by itself is the red square, and the longer leg multiplied 

by itself is the blue square. Let them be moved about so as to patch each other, each 
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according to its type. Because the differences are completed, there is no instability. 

They form together the area of the square on the hypotenuse; extracting the square 

root gives the hypotenuse. [Qian Bacong 1963, 241] 

 

Unfortunately, the figure that accompanied this proof has been lost to history. Donald Wagner 

has offered one possible reconstruction [Wagner 1985], but its intricacy is difficult to reconcile 

with the simplicity of the description above. 

There is a simpler pictorial proof that accords better with Liu Hui’s description (Fig. 1). The 

“shorter leg” here is y, and the “longer leg” is x. Multiplying each leg by itself gives the areas of 

the two “squares on the sides” (red and blue at left). Re-arranging the triangles, one sees 

immediately that this is the same as the area of the “square on the hypotenuse” h (green at right). 

 

 

 

 

 

Pythagoras himself may also have discovered this proof [Maor 2007, Posamentier 2010]. 

However, its first published appearance seems to have been in a compilation by Elisha Scott 

Loomis [Loomis 1940]. Loomis in turn attributed it to Maurice Laisnez, “a high school boy, in 

the Junior-Senior High School of South Bend, Ind., and sent to me, May 16, 1939, by his class 

teacher, Wilson Thornton.” It was later published in Mathematics Magazine [Isaac 1975]. It is 

reproduced in a book by Nelsen [Nelsen 1993], who attributes it to the Zhoubi suanjing 

[Arithmetical Classic of the Gnomon and the Circular Paths of Heaven], a classic of Chinese 

mathematics dating to the Zhou Dynasty (1046 – 256 B.C.). That document does contain a 

FIGURE 1: Gestalt-like proof of the Pythagorean theorem. By re-arranging 

the triangles (white), one sees immediately that the sum of the squares on 

the sides (red and blue) equals the square on the hypotenuse (green). 
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suggestive description similar to Liu Hui’s [Needham and Wang 1959], but without the diagram. 

This proof is not only of historical interest, but is still used in mathematical physics today; see 

for instance Brill and Jacobson (2006).  

Generalizing Pythagoras’ theorem to three-dimensional space and applying it to small 

intervals of distance, we get 𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2. This allows us to describe distances along 

curved shapes using the power of calculus. If we make a giant leap of intuition and consider time 

as a kind of distance, we get Minkowski’s generalization of the Pythagorean theorem, 

 

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑐2𝑑𝑡2 ,   (1) 

 

where the constant 𝑐 is needed to convert units from seconds to meters. This is still just 

geometry, but it is also physics! Eq. (1) tells us that there is a special speed in the universe whose 

value must be independent of any observer’s own motion along 𝑥, 𝑦, 𝑧. Impossible, but true! 

Moreover, thanks to Maxwell’s discovery that 𝑐 = 1/√𝜖0𝜇0, we know that this quantity is not 

merely abstract, but the speed of an actual thing: three-dimensional vibrations in the electrical 

(𝜖0) and magnetic (𝜇0) fields, or “light.” 

But Eq. (1) does not just describe light; it is one of the foundations of the entire standard 

model of particle physics. For example, dividing through by 𝑑𝑡2 and defining “proper time” 𝜏 

via 𝑑𝜏2 ≡ −𝑑𝑠2, we get 

 

(𝑑𝜏/𝑑𝑡)2 = 𝑐2 − 𝑣⃗2 ,     (2) 

 

where 𝑣⃗2 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 = (𝑑𝑥/𝑑𝑡)2 + (𝑑𝑦/𝑑𝑡)2 + (𝑑𝑧/𝑑𝑡)2. Defining “energy” and 

“momentum” via 𝐸 ≡ 𝛾𝑚𝑐2 and 𝑝⃗ ≡ 𝛾𝑚𝑣⃗ where 𝛾 ≡ 1/√1 − 𝑣⃗2/𝑐2, we get 

 

(𝑚𝑐2)2 = 𝐸2 − (𝑐𝑝⃗)2 .    (3) 

 

Known as the energy-momentum relation, Eq. (3) is typically derived in relativity textbooks by 

combining energy and momentum in a single four-dimensional vector, the four-momentum 𝑝𝛼 ≡

(𝐸/𝑐, 𝑝⃗), and then showing that the scalar product of this vector with itself equals rest mass 

squared: 𝑝𝛼𝑝𝛼 = (𝐸/𝑐)2 − 𝑝2 = (𝑚𝑐)2 [see, e.g., Moore 2013]. Here 𝛼 is an index labeling the 

component of any four-vector; its value ranges over 0 (for time) and 1,2,3 (for space). Any 

repeated index implies summation, so 𝑝𝛼𝑝𝛼 = 𝑝0𝑝0 + 𝑝1𝑝1 + 𝑝2𝑝2 + 𝑝3𝑝3. It is significant that 

the quantity on the right (𝑚𝑐) is invariant: it has the same value in all reference frames. 
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Equivalently, and more simply, we can see how Eq. (3) is just the Pythagorean theorem 

expressed in units of energy rather than distance (Fig. 2). The familiar expressions describing 

massive particles at rest (𝐸 = 𝑚𝑐2) and massless particles at the speed of light (𝐸 = 𝑐|𝑝⃗|) are 

merely special cases of this more general physical law. 

 

 

 

 

 

 

 

 

 

 

If we make another intuitive leap with Gauss and Riemann, we can allow movement in one 

direction to influence movement in the others and introduce coefficients in Eq. (1), so that 

 

𝑑𝑠2 =  𝑔𝑥𝑥𝑑𝑥2 +  𝑔𝑥𝑦𝑑𝑥𝑑𝑦

   +  𝑔𝑦𝑦𝑑𝑦2

+  𝑔𝑥𝑧𝑑𝑥𝑑𝑧 −  𝑔𝑥𝑡𝑑𝑥𝑑𝑡
+  𝑔𝑦𝑧𝑑𝑦𝑑𝑧 −  𝑔𝑦𝑡𝑑𝑦𝑑𝑡

  
    

  +  𝑔𝑧𝑧𝑑𝑧2 −  𝑔𝑧𝑡𝑑𝑧𝑑𝑡

    −  𝑔𝑡𝑡𝑑𝑡2

  .        (4) 

 

Again this is just geometry, but it is physics too! The coefficients 𝑔𝛼𝛽(𝑥, 𝑦, 𝑧, 𝑡) describe the 

shape of the space and time in which we make our measurements. And thanks to Einstein, we 

know that this shape is not merely abstract. If any of the 𝑔𝛼𝛽 are different from one, we will feel 

it as gravity! The theory that follows from this insight, general relativity, is notoriously 

incompatible with the standard model of particle physics --- but we see here that both are 

ultimately based on Pythagoras’ fertile theorem. (Strictly speaking, we should attach factors of 

two to the off-diagonal terms in Eq. (4), since nature presumably does not distinguish, for 

instance, between moving along 𝑑𝑥 and then 𝑑𝑦, or vice versa. Or if it does, we could generalize 

even further and allow all the 𝑔𝛽𝛼 to differ from 𝑔𝛼𝛽, an approach to the possible unification of 

forces that was originally investigated by Einstein with his assistant Ernst Straus and now goes 

by the name of nonsymmetric gravitational theory [Moffat 1995].) 

FIGURE 2: the Pythagorean theorem expressed in terms of energy 
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It gets better. We need not stop with Minkowski. What if there are more fundamental 

degrees of freedom than just space and time? After all, there are three base quantities in physics: 

length, duration --- and mass. Imagine for a moment that what we measure as rest mass really 

labels distance along a fifth direction; then Eq. (1) generalizes to 

 

𝑑𝑆2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑐2𝑑𝑡2 + (
𝐺

𝑐2
)

2

𝑑𝑚2  ,  (5) 

 

where we use an upper-case “𝑆” to denote five- instead of four-dimensional distance, and 

introduce Newton’s gravitational constant (𝐺) to convert kilograms to meters. Eq. (5) is bold! 

But no bolder than Minkowski’s Eq. (1). It means that rest mass is not necessarily constant, as 

we may have believed (just as space and time are not the separate things we believed them to be 

before Minkowski). Particles can move in the mass direction in principle; this means their 

masses may vary. Before discarding the idea immediately, consider that any such variation will 

be almost impossible to detect, because of the values of 𝑐 and 𝐺. Relativistic effects depend on 

the Lorentz factor 𝛾 defined above; with a masslike fifth dimension this becomes 

 

𝛾5 =
1

√1−(
𝑣

𝑐
)

2
−(

𝐺 𝑑𝑚

𝑐3𝑑𝑡
)

2
  .     (6) 

 

To estimate the difference between 𝛾 and 𝛾5 in a practical situation, consider for example an 

electron in the hydrogen ground state. It moves in the space direction at 1/130th of its speed in the 

time direction, 𝑣/𝑐 = 0.0075. What about the mass direction? The success of observational 

cosmology implies that its mass has probably not changed significantly since the time of cosmic 

nucleosynthesis, about ten minutes after the big bang. To get an upper limit, suppose that its 

entire rest mass was generated by some unknown process during those first ten minutes; then 

𝐺𝑑𝑚/𝑐3𝑑𝑡 = 4 × 10−69! If indeed something like Eq. (6) holds, then it probably describes a 

slow variation of particle rest masses throughout the universe over cosmological timescales 

[Bekenstein 1977, Liu and Wesson 2000, Wetterich 2014, Overduin and Ali 2017].  

So Eq. (5) is plausible, if hard to test. Now consider how it beautifies physics. In standard 

(four-dimensional) relativity, Eq. (1) divides the universe into three separate regions. Matter 

lives and moves within the “light cone” defined by 𝑑𝑠2 < 0, or  |𝑣⃗| < 𝑐 according to Eq. (2). 

The region 𝑑𝑠2 > 0 is “elsewhen”; whatever exists there can neither act upon us nor be acted 
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upon by us. Photons and other massless particles (gluons, gravitons) cling to the boundary 

between the two regions where 𝑚 = 0 in Eq. (3), or 𝑑𝜏 = 0 according to Eq. (2). 

That last statement is remarkable. To our three-dimensional senses, light appears to move 

very quickly, but in four-dimensional reality, it exists in a motionless state where no (proper) 

time ever passes. Indeed, insofar as light occupies no spacetime in four dimensions, one could 

debate whether it really “exists” at all. 

In five-dimensional relativity, that same statement may apply to everything! To see this, 

repeat the derivation that led to Eq. (5) above, but with the new dimension included. In the limit 

where 𝑑𝑚/𝑑𝑡 = 0, you will recover the very same equation, but with the mass term simply 

moved to the right-hand side: 

 

0 = 𝐸2 − (𝑐𝑝⃗)2 − (𝑚𝑐2)2 .    (7) 

 

As before, 𝐸 arises from the time component of Pythagoras’ theorem, and 𝑝⃗ with space. 

Now, however, 𝑚 is no longer the invariant magnitude of the momentum four-vector. In fact, it 

is not invariant at all, and does not divide the universe into causally distinct regions as before. 

Instead, it is merely the fifth component of a five-dimensional momentum vector 𝑝𝐴 ≡

(𝐸/𝑐, 𝑝⃗, 𝑚𝑐), where the index labeled by 𝐴 ranges over 0 (for time), 1,2,3 (for space), and 4 (for 

mass). The magnitude of this vector, 𝑝𝐴𝑝𝐴 = (𝐸/𝑐)2 − 𝑝⃗2 − (𝑚𝑐)2, is even simpler invariant 

than mass: it is zero! Eq. (7) just states this explicitly. If it is correct, then from a five-

dimensional point of view all matter lives in the same exalted state as light. In the language of 

relativity, all particles follow null geodesics with 𝑑𝑆 = 0. 

The condition 𝑑𝑆 = 0 is not guaranteed in five-dimensional relativity, but is consistent with 

certain choices of coordinates, and seems to be logically favored in several ways [Seahra and 

Wesson 2001, Wesson 2008, Wesson 2009]. We might imagine the situation schematically with 

a generalization of Fig. 2 in which all three spatial directions are compressed into a single 𝑥⃗-axis 

(Fig. 3). Choosing coordinates such that 𝑝𝐴𝑝𝐴 = 0 (or equivalently, assuming 𝑑𝑆 = 0 for all 

particles) has the effect of “pushing” 𝐸 down into the 𝑥⃗-𝑡 plane so that the five-dimensional 

Pythagorean energy theorem effectively agrees with the four-dimensional one and Eq. (3) is 

satisfied automatically, 𝐸2 = (𝑚𝑐2)2 + (𝑐𝑝⃗)2.  
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Of course, even if we do not set 𝑑𝑆 = 0 in principle, the value of the invariant 𝑝𝐴𝑝𝐴 may be 

undetectably small in practice. On dimensional grounds, we know that the “height” of the cube 

in Fig. 3 must be of order 𝑐|𝑝𝐴| ≈ 𝑚𝑐 𝑑/𝑑𝑡(𝐺𝑚/𝑐2)  = 𝐺𝑚𝑚̇/𝑐 where |𝑝𝐴| means the 

magnitude of 𝑝𝐴 and 𝑚̇ is the time rate of change in mass. Adopting the same numbers as above, 

we find that 𝑐|𝑝𝐴| ≲ 2 × 10−63 eV for the electron. 

There are other, deeper reasons to extend Pythagoras’ theorem, and the theory of gravity 

based on it (general relativity), to higher dimensions. Einstein’s gravitational field equations are 

obtained by differentiating the Pythagorean coefficients 𝑔𝛼𝛽 in Eq. (4) with respect to space and 

time and combining them in something called the Einstein tensor 𝐺𝛼𝛽. Gravity is geometry! 

These bumps and wrinkles in spacetime are then sourced by matter, as contained in the “energy-

momentum tensor” 𝑇𝛼𝛽 on the right-hand side: 𝐺𝛼𝛽 = (8𝜋𝐺/𝑐2)𝑇𝛼𝛽. As John Wheeler put it, 

“matter tells spacetime how to curve, and curved spacetime tells matter how to move.” Despite 

the undeniable beauty of this picture, it is well known that Einstein himself remained unhappy 

with its dualistic division of nature into “field” and “source.” In 1936 he compared his field 

equations to a mansion, one wing of which is built of fine marble and the other of low-grade 

wood [Einstein 1936]; and he still echoed this point in a posthumous edition of The Meaning of 

Relativity twenty years later [Einstein 1956]. 

In five dimensions, this dichotomy disappears. The field equations read simply 𝐺𝐴𝐵 = 0. 

(The Einstein tensor is defined exactly as before, but derivatives now run over mass as well as 

FIGURE 3: the Pythagorean theorem in five dimensions 
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space and time.) No matter: everything is geometry! When one extracts the four-dimensional 

(𝛼, 𝛽) components of these equations, one recovers the full four-dimensional Einstein equations 

𝐺𝛼𝛽 = (8𝜋𝐺/𝑐2)𝑇𝛼𝛽, with matter and energy (𝑇𝛼𝛽) induced in four dimensions from empty 

five-dimensional spacetime. This is consistent with the idea expressed above, that matter is not 

fundamentally different from light; and with Einstein’s dream of a theory unifying fields with 

their sources. He too experimented with higher dimensions, but was unwilling to grant them the 

degree of physical reality that could have led to new physics. For more on this subject, readers 

are directed to a short article [Wesson et al. 1996], a longer review [Overduin and Wesson 1997] 

or a recent comprehensive book [Wesson and Overduin 2018]. 

We have seen that all of physics (whether in two, three, four dimensions or possibly more) 

can be seen as applied geometry --- and this geometry is so axiomatic that it does not require 

mathematical proof, but can be apprehended at once, by direct human intuition. Could it be, as 

maintained by Arthur Eddington and others [Eddington 1958, Henry 2005, Wesson 2010], that 

“the stuff of the world is mind-stuff”? The historical roots and future implications of this 

wonderful idea deserve to be more fully explored. 
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